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Abstract. An expression is obtained for the time-dependent wavefunction of a spinless 
non-relativistic particle escaping from a spherically symmetrical potential well having an 
outer barrier through which the particle can penetrate. The initial state of the particle, at 
time f = 0, is taken to be a normalised wavepacket, located in the well, but otherwise 
arbitrary. The time-dependent Schrodinger equation of the system is solved by means of a 
Laplace transform, and the form of the wavefunction at a distance from the well is used to 
determine the conditions under which the process wculd appear to a suitable particle 
detector as an emission with one or more exponential decay rates. 

1. Introduction 

The quantum-mechanical problem of the escape of a spinless non-relativistic particle 
from a potential well having an outer barrier through which the particle can penetrate is 
of continuing interest, both for its own sake and in the general context of the theoretical 
treatment of ‘metastable’ states and associated phenomena, such as alpha-emission, 
auto-ionisation, scattering resonances, and certain solid-state processes. For recent 
contributions in this field from various points of view, and references to earlier work, 
see e.g. Schulman et a1 (1978), Sharma and Ogunsulire (1978) and Drukarev er a1 
(1979). 

To understand this continuing interest, it should be remembered that the treatment 
of the problem originally given in connection with the theory of alpha-emission 
(Gamow 1928, Gamow and Critchfield 1949) requires the use of so-called ‘quasi- 
stationary’ states. These are solutions of the time-dependent Schrodinger equation of 
the system, H$ = iha$/af, say, which have the same form as stationary states, i.e. 
$(r ,  t )  = q5E(r) exp( -iEt/h), with H& = E&, but which, unlike stationary states, 
satisfy the boundary condition of representing purely outgoing waves at infinity. 

It was shown that one or more discrete solutions of this type exist if the outer barrier 
is high enough, and that in such solutions E necessarily has a negative imaginary part. 
Because of this \ $ I 2  at any point decreases exponentially with time, thus compensating 
for the net outflow of particles at infinity. The probability flux vector also decreases 
exponentially with time, and, by a suitable choice of potential well and barrier, the 
essential features of alpha-emission could be accounted for (Gamow and Critchfield 
1949). 

However, this treatment is open to objection in two ways. 
(1) The momentum of the particle at a distance from the well also has a negative 

imaginary part, as a result of which the amplitude of the wavefunction at any time t 
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increases exponentially without limit with increasing distance from the well. Hence 
there is no time, t = 0 say, at which the particle can be said to be definitely in the well; on 
the contrary, it is at all times most likely to be at infinity. 

(2) In general, the use in quantum mechanics of wavefunctions satisfying boundary 
conditions which are such that operators representing dynamical variables, e.g. energy, 
have complex eigenvalues and so are not Hermitian leads to serious logical and 
mathematical inconsistencies, in spite of attempts by a number of authors to justify their 
use. For a detailed discussion of this and allied topics the reader is referred to Sharma 
and Ogunsulire (1978). 

Recent attempts to treat the problem in a way which avoids these objections are of 
two kinds. 

(a) Schulman et a1 (1978), and other authors referred to therein, consider first the 
so-called ‘finite-volume’ problem, in which the potential consists of two wells, A and B 
say, separated by a barrier. If penetration through the barrier is neglected, the 
stationary states of the system below the barrier consist of the bound states of the 
particle in well A, and those of the particle in well B. Transitions from a state in which 
the particle is in well A, say, to states in which it is in well B can occur by barrier 
penetration. The limiting case in which the outer boundary of well B is removed to 
infinity should then provide a solution of the present problem. However, the treatment 
used by these authors leads to certain as yet unresolved difficulties, for details of which 
the reader is referred to the paper by Schulman er a1 (1978). 

(b) Since the system is not in a stationary state, Drukarev et a1 (1979) do not look 
for a solution in the form of a modified or perturbed stationary state. Instead they solve 
the time-dependent Schrodinger equation of the system with an initial wavefunction, at 
time t = 0, of the form of a normalised wavepacket, located in the well, but otherwise 
arbitrary. It is a property of the equation that the solution is then normalised at all 
times. They express the solution as an expansion in terms of the usual continuum of 
positive energy eigenstates of the system, as used, for example, in the treatment of 
elastic scattering. Finally, they obtain an expression for the overlap integral of the 
wavefunction of the particle at time t > 0 with the wavefunction at time t = 0. The 
square modulus of this quantity gives the probability that the particle would be found at 
time t to be still in its initial state in the well. They show that this probability decreases 
almost entirely exponentially, with one or more decay constants, depending on the 
potential. 

Although the work of these authors is not open to the objections discussed above, it 
does not constitute a complete treatment of the problem, since they do not consider 
explicitly what would be observed by a suitable particle detector placed at a distance 
from the well, nor is this obvious from their form of solution. 

It is the purpose of the calculation given in 9 2 er seq of the present paper to remedy 
this omission. Starting from the same premises, i.e. taking the initial state of the system 
at time t = 0 to be a normalised wavepacket located in the well but otherwise arbitrary, 
the time-dependent Schrodinger equation of the system is solved for t > 0 by means of a 
Laplace transform with respect to t. The resulting solution is in a convenient form for 
the present purpose, since it leads (0 3) to simple expressions for the component parts of 
the wavefunction at a distance from the well. The results are summarised and discussed 
in 84. 

It will be assumed that the potential V ( r )  (see figure 1) is real, spherically 
symmetrical and finite everywhere, that V(r)  + 0 faster than r-l  as r + 00, and that the 
particle is in an s-state. It is shown in § 5 how to generalise the results to potentials 
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Figure 1. The potential V(r ) ,  consis- 
ting of a potential well with an outer 
barrier, and the comparison potential 
Vl(r), which is the same as V(r )  from 
r = 0 to the top of the barrier, and from 
there on remains constant. 

Figure 2. The energy eigenvalues U, of the system for finite R, 
given by the poles in the complex w-plane of the function 
O(r, w )  defined by equation (2.6). The contours C, and C: are 
those used in the evaluation of the integral (2.4) for the 
wavefunction of the particle. 

having a ‘Coulomb tail’, i.e. such that V(r )  - Cr-’ as r + CO, and to higher states of 
orbital angular momentum of the particle. 

2. The solution of the Schrodinger time-dependent equation of the system 

If we write the time-dependent wavefunction of the particle in an s-state as q ( r ,  t )  = 
r-’(I , (r ,  t), then V satisfies the Schrodinger time-dependent equation of the system, and 
hence, using units in which h = 2m = 1, (I, satisfies the ‘radial’ equation: 

H,G = - a2(I,/dr2+ V(r)(I, = ia(I,/dt. (2.1) 

We shall solve this equation with the boundary conditions (I, = 0 at r = 0 and at 
r = R. Here R >> ro,  where ro - the radius of the well; later we let R + 00. For the initial 
value of (I, at t = 0 we write $(r ,  0) = (I,O(r). For q ( r ,  t )  to represent a single particle, we 
require it to be normalised to unity at all times t 2 0, and this will be so provided that, at 
time t = 0, 

in which the first integral is in principle over all space, and the initial wavepacket 
represented by (I,O(r) is assumed to have negligibly small amplitude for r > ro. 

We now use a Laplace transform with respect to t, slightly modified for later 
convenience. Thus, if one defines 

m 

O(r, w )  = - i (I,(r, t )  exp(iwt) dt, I m w > O  (2.3) 

then 

$ ( I ,  t )  = (2r i l - l  Icu O(r, w )  exp( - iwt) dw, t > O  (2.4) 

where the contour C, is as shown in figure 2. 
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By multiplying each term of equation (2.1) by exp(iwt) and integrating with respect 
to t from 0 to 00, we obtain, for Im w > 0, 

d2@(r, a ) / d r 2  + [w - V(r)]@(r, w )  = &,(r). (2.5) 

It can be verified by direct substitution that the expression 

is the solution of equation (2.5) with the required boundary conditions @(U, w )  = 
@(R, U )  = 0 for all w,  provided that #(r, w )  and X(r, w )  are solutions of H& = wq5 and 
H,,y = w x  such that # = 0 at r = 0 and ,y = 0 at r = R, and that W ( w )  is the Wronskian of 
# and x, namely 

W = # dxjdr -x d#ldr. (2.7) 

It can easily be verified that d Wldr = 0 for all r, and hence that W is independent of r. 
Note that the form of the expression (2.6) is such that no particular normalisation of # 
or of x is needed. 

Equations (2.4) and (2.6) thus give the required solution for t > 0 and finite R. It can 
be shown that # and ,y and their derivatives are analytic functions of w for ail finite w,  
and that the only singularities of @(r, w )  are simple poles which occur where W ( w )  = 0. 
For details, see Titchmarsh (1958 Part I, ch I), whose approach to the theory of 
eigenfunction expansions provided the inspiration for the treatment given in this 
section. 

Now if W ( w , )  = 0 ,  ( 1 2  = 0, 1 , 2 , .  . .), say, then, by (2.7), x(r ,  U,, )  = u,#(r, U,) ,  where 
a, is a constant. It follows that #(r, U,) = 0 at r =1 R as well as at r = 0, i.e. that d(r ,  w,) is 
an eigenfunction of H,, for finite R, with eigenvalue a,,. Conversely, if w ,  is an 
eigenvalue, then ~ ( r ,  w,)a#(r,  w,) ,  and hence, by (2.7), W(wn)  = 0. Since H, is 
Hermitian with respect to the assumed boundary conditions, all w, are real; they are in 
fact, in the units used here, the energy eigenvalues of the system for finite R (figure 2). 

Note that the contour C, can be completed below to give C: (figure 2), and the 
theory of residues then gives 

which is the expansion of the solution in eigenfunctions of H, for finite R. Note that the 
4’s are real for real w.  

We now consider what happens as R -+ 00. For any potential which -+ 0 as r -3 CO, the 
‘positive energy’ (0 > 0 )  eigenvalues of the system close up to form a continuum in 
0 < w <CO, and only the remaining eigenvalues, if any, with negative w, i.e. the bound 
states of the system, now give contributions to the wavefunction of the form (2.8) (see 
figure 3). 

It is convenient from now on to use k = w ” 2  instead of w,  choosing the root to be 
such that Im k > O  for all w on C:. The corresponding contour C k  in the complex 
k-plane i s  shown in figure 4. 

Assuming, as previously stated, that Ilio(r) is negligible for r greater than some value 
ro, then, for r > ro, the solution given by equations (2.4) and (2.6) reduces, apart from 
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Figure 3. The limiting case R +CO of figure 2. 

Figure 4. Properties in the complex k-plane of the integrand of expression (3.3) for the 
wavefunction of the particle at a distance from the well. The saddle-point at k = k ,  = r /2 t ,  
and a pole at k = k ,  just below the real axis, are shown. The arrows marked UP (or DOWN) 
indicate the directions in which the modulus of the integrand increases (or decreases) most 
rapidly away from the saddle point. The contours C, and C; are those used in the 
evaluation of (3.3). 

bound state contributions of the form (2 .8)  which will be omitted from now on, to 

t,b(r, t )  = (27r9-l [ F ( k ) /  W(k)] ,yk(r)  exp( - ik2 t )2k  dk  k, 
where F ( k )  is the ‘4-transform’ of the initial state, i.e. 

F ( k )  = I ‘O dk(r )$O(r )  dr 
0 

(2 .10)  

and all functions of w have been rewritten as functions of k .  Thus d k ( r )  and ,yk(r)  are 
solutions of H d k  = kZdk,  HrXk = k2Xk, such that 4 k  = o at r = o as before, and now, in 
the limit R + CO, X k  + 0 as r + CO, at least for all k on c k ,  i.e. for Im k > 0. 

3. The wavefunction at a distance from the potential well 

Since, by hypothesis, V ( r )  + 0 faster than r-* as r + CO, we can, for large enough r, use 
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the asymptotic form 

q5k (r) - A (k)  exp(ikr) + B(k)  exp( - ikr) (3.1) 

x k  (I) - exp(ikr) (3.2) 

where A(k )  and B(k )  depend on the potential; also we can take 

since x is required to be the solution of H,,y = k’x which + 0 as r + 03 if Im k > 0, and no 
particular normalisation is required. Then, since W(k) is independent of r, and so can 
be evaluated anywhere, we have, by (2.7), (3.1) and (3.2), W(k) = 2ikB(k), and hence, 
for large enough r :  

+(r, t) - - (2+* [ [F(k)/B(k)]  exp[i(kr - k’t)] dk. (3.3) ’ ck 
Note that we can write 

exp[i(kr - k’t)] = exp[ - it(k - r/2t)’] exp(ir2/4t) (3.4) 
which shows that the integrand has a saddle point at k = r/2t = k,, say (figure 4). 

So far the calculation would have been valid whether V(r) had an outer barrier or 
not. Now it is known that a potential with an outer barrier has a zero of B(k )  just below 
the real axis of k near any real value kb of k which is such that Eb = k t  is the energy of a 
bound state of the comparison potential Vl(r) shown in figure 1, provided Eb is above 
the zero of energy, i.e. V(CO), used here. The broader the barrier, the nearer the zero of 
B(k )  is to kb. For details, see e.g. Drukarev et a1 (1979), who give a precise method for 
locating such zeros, and references to earlier work. 

Let there be such zeros of B(k)  at k = k, = k,R -iy,,, ( n  = 1 , 2 , .  . .), say, with 
O <  yn << knR. The contour Ck in (3.3) can then be deformed continuously into C(, 
(figure 4), leaving behind small loops round any pole of the integrand, i.e. any zero of 
B(k) ,  that the contour passes through in the process. We can now write 

where, by integrating across the saddle point, the method of steepest descents gives, for 
large enough t, 

+dr, t )  = 2(.rrt)-”’[F(ks)/B(k,)] exp(ir2/4t - i ~ / 4 ) ;  (3.6) 
also, for each pole: 

+(,)(r, t) = -i[F(k,)/B’(k,)] exp[i(k,r - k;t)] 

(a) for k, = r/2t < knR, i.e. r < 2k ,~ t ,  

= -i[F(kn)/B’(kn)l eXP[y,(r - 2 k n ~ t ) l  exp[i(k,Rr - k i ~ t ) ] ;  (3.7) 

+‘“’(r, t) = o (3.8) 

(b) for k, = r/2t < knR, i.e. r > 2k,~t ,  

since in the latter case the contour does not pass through the pole in the process of 
deformation. Thus, for each pole, the corresponding component 4“‘) of the wavefunc- 
tion has a ‘cut-off’ at r = 2knRt, which moves outwards with velocity 2 k , ~ ,  followed by an 
oscillation of wavenumber knR whose envelope is a decaying exponential also moving 
with velocity 2knR (figure 5 ,  full curves). Note that in the units used here, 2knR is the 
classical velocity of a particle of momentum knR and energy (knR)’. 
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A more precise evaluation of the expression (3.3), to be given elsewhere, shows that 
the envelope of the wavefunction in fact displays small oscillatory departures near the 
cut-off from the approximate result given here (figure 5 ,  broken curves). These do not, 
however, affect the conclusions drawn in the next section. 

I 

Figure 5. The envelope, moving with velocity 2 k , R ,  of the oscillation of wavenumber knR 
which consititutes the component ~ l c n )  of the wavefunction of the particle at a distance from 
the well. Full curves: the approximate result obtained here; broken curves: the result of a 
more precise calculation to be given elsewhere. c: 'cut-off' at r = 2knRr. 

4. Summary of results and discussion 

We have seen that provided the comparison potential Vl(r)  (figure 1) has at least one 
bound state with energy above the zero of energy V(m) used here, then the radial 
wavefunction $(r ,  t )  of a particle known to be in the potential well V(r)  at time t = 0 
will, for each such bound state of V, ( r ) ,  have a component $(')(r,  t ) ( n  = 1, 2, . . .) given 
by equations (3.7) and (3.8) (see figure 5 ) .  

At any point r, after the passage of the 'cut-off' (figure 5 ) ,  $ ( n )  consists of an 
oscillation of wavenumber kflR with an amplitude which varies with t as exp( - 2 - y f l k n ~ t ) .  
Provided the particle detector used to observe the process has sufficient momentum 
resolution, it will respond separately to the momenta knR of the particle in the different 
components $'"' of the wavefunction. The process will then, for each such component, 
appear as the emission of a particle of momentum kflR and energy (k,R)', with, as can be 
seen from equation (3.7), a peak probability flux per unit solid angle of 
2 k , ~  lF(kn)/B'(kn)I2;  this flux then decays exponentially with decay constant 4 y , , k , ~ .  
Integration of the flux over all time and angles gives the total probability 
2rr(-yfl)-11F(k,)/B'(k,)12 that the particle would be found to have been emitted in the 
'state' 4'"'. 

Note that for the above to be the case the particle need not have been in any 
particular initial state in the well; a necessary and sufficient condition is that the 
'4-transform' F ( k )  of the initial state, defined by equation (2 .10) ,  should not vanish at 
k = k,. 

It is satisfactory to observe that the decay constants 4 -ynknR agree, in the units used 
here, with those found by Drukarev et a1 (1979) for the decay of the probability that the 
particle would be found to be still in its initial state in the well. 
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We have tacitly assumed that the particle detector used does not respond appreci- 
ably to the ‘non-exponential decay’ component U?, of the wavefunction given by 
equation (3.6). This seems reasonable since at any given point r, GS represents the 
passage of a wave of continuously changing wavenumber and frequency. However, it is 
intended to study further the physical significance of this term, which would be the only 
surviving one if the potential had no barrier, and its importance in connection with 
particular potential wells, initial states, and detecting processes. The results will be 
submitted for publication in this journal. 

5. Generalisations 

If the particle is assumed to be in a state with angular momentum quantum number 
I > 0, its time-dependent wavefunction can be written as U(r, 2 )  = r- ‘$ ( r ,  t )  Y,(8, 4), 
where Y, is a spherical harmonic of order I ,  normalised to 471. on the surface of a unit 
sphere. It can then be verified that the calculation given above remains valid provided 
(1) that V ( r )  is replaced throughout by V(’)(r)  = V ( r )  + 1(1+ l)r-’, and the correspond- 
ing comparison potential Vi’) ( r )  is defined to be equal to V( ‘ ) ( r )  from r = 0 to the top of 
the barrier of V(”(r) ,  and to be constant from thereon, and (2) that a factor I Yr(04)/’ is 
inserted in the expression for the peak probability flux per unit solid angle given in P 4. 

If the potential has a ‘Coulomb tail’, i.e. if V ( r )  - Cr-’ as r + CO, where C is a 
constant, then the asymptotic forms (3.1) and (3.2) are modified by the addition of the 
well known Coulomb phase term. In the units used here, exp( f ikr) must be replaced 
by exp[ f i(kr - C In 2 k r / 2 k ) ] .  However the added term becomes negligible compared 
with kr for large enough r, and it can be verified that the results previously obtained are 
still valid. 
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